Can inorganic phosphate explain sag during unfused tetanic contractions of skeletal muscle?

نویسندگان

  • Ian C. Smith
  • Catherine Bellissimo
  • Walter Herzog
  • A. Russell Tupling
چکیده

We test the hypothesis that cytosolic inorganic phosphate (Pi) can account for the contraction-induced reductions in twitch duration which impair summation and cause force to decline (sag) during unfused tetanic contractions of fast-twitch muscle. A five-state model of crossbridge cycling was used to simulate twitch and unfused tetanic contractions. As Pi concentration ([Pi]) was increased from 0 to 30 mmol·L-1, twitch duration decreased, with progressive reductions in sensitivity to Pi as [Pi] was increased. When unfused tetani were simulated with rising [Pi], sag was most pronounced when initial [Pi] was low, and when the magnitude of [Pi] increase was large. Fast-twitch extensor digitorum longus (EDL) muscles (sag-prone, typically low basal [Pi]) and slow-twitch soleus muscles (sag-resistant, typically high basal [Pi]) were isolated from 14 female C57BL/6 mice. Muscles were sequentially incubated in solutions containing either glucose or pyruvate to create typical and low Pi environments, respectively. Twitch duration was greater (P < 0.05) in pyruvate than glucose in both muscles. Stimuli applied at intervals approximately three times the time to peak twitch tension resulted in sag of 35.0 ± 3.7% in glucose and 50.5 ± 1.4% in pyruvate in the EDL (pyruvate > glucose; P < 0.05), and 3.9 ± 0.3% in glucose and 37.8 ± 2.7% in pyruvate in the soleus (pyruvate > glucose; P < 0.05). The influence of Pi on crossbridge cycling provides a tenable mechanism for sag. Moreover, the low basal [Pi] in fast-twitch relative to slow-twitch muscle has promise as an explanation for the fiber-type dependency of sag.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue.

AIM Skeletal muscle fatigue is characterized by a failure to maintain force production or power output during intense exercise. Many recent studies on isolated fibres have used brief repetitive tetanic contractions to mimic fatigue resulting from intensive exercise and to investigate the underlying cellular mechanisms. Such studies have shown that characteristic changes in Ca2+ regulation occur...

متن کامل

Prolonged activity evokes potentiation and the "sag" phenomenon in slow motor units of rat soleus.

Slow motor units (MUs) have no sag in their unfused tetani. This study in anesthetized rats shows that the sag can be observed in slow soleus MUs after prolonged activity. Twitches and unfused tetanic contractions were recorded from male (n=35) and female (n=39) MUs before and after the four minutes of the fatigue test (trains of 13 pulses at 40 Hz repeated every second). After this activity tw...

متن کامل

Sag during unfused tetanic contractions in rat triceps surae motor units.

Contractile properties and conduction velocity were studied in 202 single motor units of intact rat triceps surae muscles activated by intra-axonal (or intra-myelin) current injection in L5 or L6 ventral root to assess the factors that determine the expression of sag (i.e., decline in force after initial increase during unfused tetanic stimulation). Sag was consistently detected in motor units ...

متن کامل

Motor units of medial gastrocnemius muscle in the rat during the fatigue test. I. Time course of unfused tetanus.

Time course of tetanus recorded during 40 Hz stimulation was examined on 70 motor units (MUs) of medial gastrocnemius muscle in 41 rats. Three types of MUs were distinguished: slow(S), fast resistant to fatigue (FR) and fast fatigable (FF). In fast MUs of either type, the stimulation induced unfused tetanus with noticeable sag. It was found that in cases of tetani in FF MUs, the sag developed e...

متن کامل

Force-frequency relationship and potentiation in mammalian skeletal muscle.

Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial gastrocnemius muscles in situ. Muscles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016